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ABSTRACT

The power density spectrum of the received acoustic waveform after reflection off the time-varying
random sea surface is evaluated at an arbitrary observation point in the farfield. For a monochrormatic
transmitted signal and a narrow-band Gaussian surface-height variation, the received acoustic spectrum
is shown to consist of an impulse at the transmitted acoustic frequency plus sidelobes centered at fre-
quencies separated from the transmitted f'-.quency by multiples of the surface center frequency. The
powers in the coherent component and scatteted sideband cemponents of the received pressure waveform
are evaluated in terms of the surface roughness and spatial-temporal correlation function of the surface.
For the special case of elliptical contours of iso-correlationat zero time delay, the sideband powers and
scattering strengths are evaluated in terms of two fundamental parameters that include the geometry of
the experiment, the incident acoustic frequency, the root mean square (rms) surface height, and tI;e
surface correlation distances.

Tie rms bandwidths of the sideband scatter components are evaluated for small surface roughness and
shown to be approximately proportional to the square root of the sideband number. Numerous examples of
sideband scattering strengths for a variety of spatial correlation functions, including exponential and
Gaussian decay as special cases, are given.
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SPECTRUM OF A SIGNAL REFLECTED FROM A
TIME-VARYING RANDOM SURFACE

1. INTRODUCTION

The purpose of this study is to determine the spectrum of an acoustic
signal reflected from a time-varying random surface. Of the many
scientists who have investigated scattering from such a surface, we
will mention only a few. Rayleigh considered a sinusoidal fixed surface
and solved for the reflected pressure for a given incident monochromatic
wave. Eckart's classic work [I] on scattering from a random surface
employed the Kirchoff method# i. e., he assumed that the surface could
be represented by the tangent plane to the surface at each point
of incidence. Starting with the Helmnholtz equation, Beckmann and
Spizzichino [2] alsoused the Kirchoff approximation, but, in their deri-
vation, they differentiated with respect to the normal to the surface
instead of the vertical axis, andused an integration by parts to eliminate

edge effects. Thus, they obtained a different geometric factor from that
of Eckart [1] for the reflected pressure. LaCasce and Tamarkin [3] per-
formed experimental studies on the reflection off a fixed sinusoidal
pressure-release surface. Horton and Muir [4] also performed experi-
mental studies on the scattering from a rough random surface, compared
their results with a modified version of the Eckart theory, and found
good agreement. Wagner [5] considered a Gaussian surface, andusing
the parameters of root-mean-square (rms) height and correlation of
surface heights, and treating the incident waves as rays, determined
the amount of shadowing as a function of the grazing angle of the incident
acoustic wave. From these results, a correction value for the shadowing

effect was made by Wagner [5] to the Eckart [1] and Beckmann and
Spizzichino [2] theories. Marsh [6] also utilized the Rayleigh method
and considered the signal reflected from a random surface to consist
of an infinite set of plane waves. By applying boundary conditions on
the surface, he solved for the scattering coefficient of the surface
reflection.

The number of investigations of a time-varying random surface is
considerably less than that of a fixed surface. Of these, we will mention



only the works of Roderick and Cron [7] and Parkins [8]. Roderick
and Cron considered a sinusoidal traveling surface wave, where, for a
single-frequency incident acoustic wave, the frequency of the reflection
in the specular direction is the same as the incident frequency, and the
frequencies in the nonspecular directions are equal to the incident fre-

quency plus multiples of the surface frequency. They compared the
theoretical predictions of the amplitudes of these components with ex-
periment. Parkins considered a time-varying random surface, a joint
Gaussian distribution of heights, and a Neumann-Pierson surface -height
spectrum. For both small and large surface roughness, he obtained
the scattered acoustic spectrum.

In our work, we start with the assumptions used b, .:

o the Kirchoff method [2, p. 20] - the methodof physical optics -
is used,

* the insonified area is in the farfield (Fraunhofer region) of the
source,

* the observation point is in the farfield of the insonified area,

*the surface is pressure-release,

*no shadowing or multiple reflections occur,

*a directional source is used, and

ethe surface particle velocity is small compared with the speed

of sound.

Starting with the Helmholtz integral and a given incident single-
frequency acoustic source, we obtain the (complex) pressure at the

observation point. The surface height is designated a function of position
x, y, and time t; the first- and second-order probability distributions

of height are assumed independent of absolute position and time and
dependent only on tie differences in the x and y coordinates and time.
That is, the surface is assumed homogeneous and stationary. The
autocorrelation function of the received acoustic complex pressure
is obtained by using these properties. The Fourier transform of the
autocorrelation function then yields the received acoustic power spectrum.

2



I
The equation for the power spectrum is then specialized to the case

of a joint Gaussian distribution of surface heights and a narrow-band,
surface-height spectrumat a point; for this case, the spatial-temporal
correlation function of the surface can be re'-resented as a sinusoidal
oscillation in time-delay with a slowly varying amplitude and phase. It
is then assumed that the iso-values of the surface-correlation function
is an ellipse; for this case, it is shown that the received acoustic spec-
trum consists of a series of spectral '.bes or sidebands, each separated
from the incident acoustic frequency by multiples of the center fre-
quency of the surface variation, plus an impulse at the incident acoustic
frequency. The relative powers in these sideband components are
evaluated in terms of two fundamental parameters: the first is the
surface-roughness parameter, and the second is related to the corre-
lation distances of the surface (the horizontal separation for which the
surface correlation falls to e- 1 of its origin value). The powers in
the sidebands are numerically evaluated and plotted versus these two
parameters, for both specular and nonspecular directions, for a variety
of spatial correlation functions, including exponential and Gaussian
decay as special cases.

2. REFLECTION FROM A GENERAL TIME-VARYING SURFACE

Z. 1 RECEIVED PRESSURE WAVEFORM REFLECTED FROM
A TIME-VARYING SURFACE

The geometry of the scattering experiment is depicted in Fig. 1.

z-axis

Q •.,• •f y-axis

(ILLUMINATED AREA OF SURFACE

Fig. 1 - Scattering Geometry

3



The source o- acoustic radiation is at Q, and the observation point is

at A. The symbol 0 is an origin of coordinates. Let the unit vectors

in the x, y, z directions be i,j,k, respectively, and let iUQ and i!
be unit vectors from 0 in the directions of source Q and receiver
A, respectively. Then,

U Qj + ,

uaf =faA I Aa)i +bAJCAk ,

where (a^, b, cQ ) and (a A, bA, C A) are the direction cosines of the
source an% re~ceiver, respectively.

Let the sums of direction cosines be denoted by

a =a Q+a A,

b =bQ +bA, (2)

c•= c Q +CA

The specular direction corresponds to a= b = 0; i.e., aA= -aQ,

bA = -bQ, and cA = CQ. It is the direction in which all the reflected

energy would occur for a mirror-like surface.

The height of the reflecting surface at position x, y fluctuates with

time and is denoted by C(x, y, t). The average surface height corresponds
to C = 0. Under the assumptions given in Section 1, the (complex) re-

ceivedpressure at A, for a single-frequency excitation exp(iZlrf~t) at

Q, is givenby [8, Eqs. (1) and (10)1; 1, Es. (1) and (6)2; 4, Eq. (9);
9, Eqs. (6. 9) and (6.24)]

B
p(r) = -i exp[i(2yfat -kRo)] -ffdxdy-i (xy)

a .R (3)

exp[ik.(ax+by +cC(x,y,t)) ,

where
3

f. = acoustic frequency,

A = acoustic wavelength,

'The factor s6+ is missing in (10) of Ref. 8.
2The exponent inside the integral in (6) of Ref. 1 should be negative; see also Ref. 4, footnote 6.
3Strictly, the argument t in C should be replaced by the retarded time taken by a signal to

travel from a reflecting point (x, y) to A. However, for a slowly fluctuating surface that does not
change much in the tin-e taker for sound to piopagate across the illuminated region, a good approxi-
mation is t-R0 /v, where v is the propagation velocity. The delay Ro/v hai been dropped in C in
(q) for notational simplicity. Also integrals without limits are over the range of nonzero integrand.

4



k acoustic wave number (2f/A.),

R. - distance from origin 0 to observation point A,

Pi(x,y) - spatially dependent component of the incident pressure field on the reflecting
suriace (without the phase factor due to propagation over the distance from Q
to 0), and

B - real scale factor depending only on the geometry of the experiment.(See Ap-
pendix A for further details on this factor.)

(Since some authors assume an excitation of the form exp(iZrfat),
differences in sign with (3) will occur in those references).

For a general signal s(t) transmitted, with voltage density spectrum
S(f), the received pressure waveform r(t) is given by

r(t) = fdf. p(t; fa) S(fa)
(4a)

=fdfaexp(i2flfat)H(f,;t)S(f.)

where B
H(fa;t) M -i exp(-ik.R.) - ffdxdy ^(,( y)

ýaP.R (4b)

exp[ik,(ax+by +cZ(x,y,t))I

We have indicatedexplicitly the dependence of receivedpressure p
on acoustic frequency f.(p, is also dependent on f.) and used (3). The
representation in (4a) shows that the surface can be viewed as a linear
time-varying filter on transmitted acoustic waveforms with instantaneous
transfer function H(f ; t) given by (4b).

For a real sinusoidal acoustic signal transmitted,

s(t) cos(21rfat) = Relexp(i2nfft)I , (5)

the real receivedpressure is given by Relp(t)l . Thepower in the real
received signals is

;e2 p(t)I=!.Ip(t)+p*(t)12 =-ip(t)I 2 , (6)
4 2(6

where we have used the fact that p 2(t) = 0; this follows from (3) upon
noting that if 4 is stationary, then p(t) is stationary, narrow-band, and
centered around frequency f.. and has its spectral content confined to
positive frequencies. (See Appendix B.) Under the reasonable assumption
that surface height C(x, y, t) varies slowly with time, as compared•4

with exp(iZir fat), p(t) is narrowband. Thus, attention can be focused on
4 For example, surface-height variations typically have spectral content in the neighborhood

of fractions of Hertz, whereas acoustic frequencies are of the order of tens of Hertz (and greater).

5



complex pressure p(t) and appropriate real parts or factors of 1/2
applied later whet. necessary.

2.2 COHERENT AND SCATTER COMPONENTS FOR A RANDOM
SURFACE

The received pressure for a single-frequency excitation is given
by (3). The coherent component [2, Section 7.3] of this waveform is
defined as its mean value (ensemble average over all possible surface
states):

BSPc(t) ýp(t) =-i exp[i(2rtft-k.Ro)] ffd dyp^,(z, y)•

SR, (7)
exp[ik.(ax + by)I fC(kac)

where

f (ka) 0 exp[ikac 4(x, y, t)1

=fd 4exp(ikac4) q1 (0) (8)

is the first-order characteristic function (CF) of the surface wave
height. Since we are assuming a homogeneous stationary surface, q,
is the first-order probability density function (PDF) of the surface
wave height and is independent of absolute position x, y and time t.
The first-order CF contains all first-order statistical information
about the surface wave-height variation since it is a Fourier transform
of the first-order PDF.

If we define the double integral in (7) as P,

ffdxdy•i(x,y) exp[ika(ax + by)] = P(k a, kjb) , (9)

the coherent component is given by
B

Pc(t) =-i expRi(2nfýt -k 8 Ro)I-P(ka,k b) f (k c) (10)
nao

This is a general relation for the received coherent component of
pressure for any surface statistics, degree of roughness, and obser-
vation point.

Since the effective extents of the incident illumination on the surface
are much larger than the acoustic wavelength, P takes on appreciable
values only when a ý-' 0, b 2 0, which corresponds to the specular
direction. (This follows upon noting that P in (9) is a double Fourier
transform of the incident pressure Pýi .) Therefore, the coherent
component is appreciable only near the specular direction.

6



For a perfectly smooth surface, • = 0, and the first-order CF
equals unity. As the surface roughness increases, the magnitude of the
CF decreases, thereby causing the amplitude of the coherent component
to decrease. The coherent component is not identically zero for a
rough surface; however, it is negligible for a very rough surface.

From (101, since the only dependence of p, (t) on time is via the
term exp(i.,-fat), the spectrum of the coherent component must be
an impulse at frequency f., just like the transmitted signal spectrum.
However, the amplitude and phase shift of the coherent component de-
pend on the physical locations of the transmission and observation
points and the degree of surface roughness.

The scatter component of the received pressure is defined as the
remainder

P s(t) ---P (t) - p -(t) --P (t) - p tt) ,( 1
which has zero mean. In order to evaluate the mean-square value, of

the scatter component, we note that

IP =(t)t2 = P() 12 _I p =(t)t 2 TP(012 - f t) 12 (12)

That is, the mean square value of the scatter component p. is equal
to the mean square value of the total received pressure p less the
squared magnitude of the coherent component pC . Using (3), we obtain

p t) I 2 R 0) fffdxl dy I dx2 dy 2  .i(xl Y 1) ^i* (x 2 1 Y2 ) (13)

exp[ikaa(x 1 -X2) +ik b(y 1 -y 2)]f (k c,-kac;x 1 -Z 2,y 1 -Y 2,'0)

where
f t(kaC,-kaC;u,v, r) = expiikacý(x,y, t)-ikacý(x-u,y-v, t-r)I

= ffd 4 d 2 exp(ikaC -ikac¢,)q 2( : 1 .t;u,v,r)

is the second-order CF of the surface wave heights. Since the surface
is homogeneous and stationary, q. is the second-order PDF of
surface wave heights and depends only on differences in position and
time. If we let u = xI - x2 , v = YI - Y2 in (13), there follows

( fBdudv J(uv) exp[ik (au+bv)lfClk c,-kac; u,v,O) (15)

R

5 Me-n magnitude-squared value, more precisely.

7



LA

where J is the autocorrelatLon of the illumination ^. incident on the

surface:

l(u, v) = ffdx dy ^, (x, y) U (x-u, y -v) (16)

Before forming I ps (t) 2 from (12), we first note from (9) that we can

express

IP(kaa,kab)I 2 =ffdudv J(u,v) exp [ika(au+bv)] (17)

Therefore, using (12), (15), (10), and (17), we obtain

Ip (t) 2  Ip(t)1 2  _ Ip"(t)12

S ffdu dv j (u, v) exp Ii k (au + bv)] (18)

If (k. c, -k .c;u,v,0)- I f(k.0 I

This is a general relation for the mean-square value of the received

scatter component in terms of the autocorrelation function J of the

incident pressure P, on the reflecting surface and on the first- and

second-order CF's of the surface-height variations C. No assumptions

about the degree of surface roughness have been made.

We will now make the reasonable assumption that the effective ex-

tents on the surface of the incident illumination jp are much larger

than the distances at which the surface heights are statistically dependent

on each other. Mathematically, this is equivalent to assuming that the

bracketed difference of CF's in (18) decays to zero in u and v much

sooner than J(u,v) does. (The difference in CF's goes to zero as

!uj, IvI because then
f (kc, ,-k.ac;u, V, T) f- Cf (k.c0 12 (19)

The double integral in (18) then is virtually unchanged if J(u, v) is re-

placed by its origin value, yielding

(A) 2 = J (O, 0) ffdudv exp [i (au +bv)] (0
(20)

[f•(kac,-kac;u.v,O) - If•(kac)j121

This double Fourier transform on space variables u and v is as

far as the analysis can be carried without further assumptions on

wave-height statistics. The surface statistics needed in these quantitative

measures of the coherent and scattered components are contained entirely

8



in the first- and second-order surface height CF's. Arbitrary surface

roughness is allowed.

As the surface roughness decreases, the difference in CF's in (18)
and (19) goes to zero (because C - 0). In this case, the scattered com-
ponent disappears, as indeed it must for a smooth surface.

In Appendix C, the scattering strength6 S of the surface, defined

as the ratio
ave~age scatter - ntensity at receiver due to unit

scatterirg art %, referred to unit distance
(21)

aw era4 .cident intensity on surface

is shown to be given by

s .. W.R.. (22)

CQJ (0,0)

If we substitute (20) into (22), the above equation becomes
B 2 1. f

S - ffdudvexp[ik.(au+bv)]
CQ a (23)

!;[f( CN,c,-ka c;u U , 0') - If f(k C) 1 21

This is a dimensionless quantity. The dimensionless factor B 2 /CQ
depends solely on the geometry of the experiment.

For a surface of very slight roughness, i.e.,

k aC max I4(x,y,t)i <«1 , (24)

we can approximate the exponential in (3) as

explikc (25)epiac C6x, y, t)1 1 + i k ac C (x1 Y, t) (5

Then, (3) becomes

I(t) W-i exp[i (2nfat - k a Ro) B [P(kaa,kab)
8a 2 0 R 0(2 6)

+ ik cffdxdyp1 (x,y) exp[ik8 (ax+by)I 4(xyt)1

6The term "scattering strength" is used in this report as an intensity ratio and is not converted
to decibels.

9
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The first term of (26) is the coherent component, and the second term
of (26) is the scatter component. This equation for the coherent com-
ponent is a special case of (10), where CF fC(k.c) is approximately
unity. Thus, the general results (10) and (18) can be reduced to special
cases, including very slight roughness (or very rough surfaces), as
desired, by appropriate choice of CF's. Also (23) is a general relation
for the scattering strength, which is applicable to any degree of rough-
ness and surface statistics.

3. REFLECTION FROM A NARROW-BAND, TIME-VARYINGSURFACE

In this section, we restrict consideration to the case where the
surface-height variation at each point of space is a narrow-band function
of time [10, pp. 347-348 and Section 8.5]; this is the case, for example,
when the sea surface is characterized as swell [10, Section 1. 2].

3.1 NARROW-BAND COMPONENTS OF RECEIVED PRESSURE
WAVEFORM

The surface height for this case of narrow-band variation can be
represented as

ý(x,y,t) =h(x,y, t)cos[2vf,ft +0(X,y, t)] (27)

where, for fixed position x, y, the amplitude h and phase 0 vary
slowly with time t in comparison with cos(ZiTfst). The center fre-
quency of the surface-height variation is f. If we substitute (27) into
(3) for the received pressure and use the expansion [11, 8. 5114]

explikach cos(2,rfEt+0)1

1 _ i`j,(k bch) expIim(21rfft + 0)1 (28)
m •-OC

the received pressure can be represented as

p (t) A W A&) exp[iZw(fa+mfs)t] (29)

where

AW exp(-ikSRO) B imJffdxdyfi(x,y)J,[k ch(x,y,t)1 (Amt)- ieA(-k Ro) (30)

exp[ik.(ax+by) ÷im0(x,y,t)

10
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Since h and 0 vary slowly with time, so also does A.(t). However,
if k ch... >> I or m >> 1, the rate of variation of Am(t) is much
faster than that of h or 0. This may be seen by noting that Bessel
function J (x) is an oscillatory functionof x; thus, Jj[kach] can go
through many cycles of variation while h goes through but one, if
k ch >> 1. Alsio, if m>> 1, exp(im0) varies much faster than 0.
The upshot is that A,(t) of (30) will contain a considerably higher
frequency content than either h or 0 if either of the above conditions
are satisfied.

Equation (29) expresses the received pressure waveform as a sum
of narrow-band components (if k ch and m are not much largerat mini.

than unity), with the mth component being centered at frequency f. + mfr.
That is, the received pressure has spectral IoLes displaced from the
transmitted acoustic frequency fa by multiples of the surface center
frequency fs . In addition, there is the coherent component at f,. This
behavior is depicted in Fig. 2.

i, COHERENT COMPONENT

fo-2f -f1  fa + f , +2f

Fig. 2 - Received Acoustic Spectrum

As a special case of (30), consider a travelir.g sinusoidal surface
of fixed amplitude:

b(z,y,t)=h

O(x,y,t) =c 1 K+c2 y+c 3  
(31)

c, and c2 are related to the direction of travel of the surface wave
and its velocity of propagation, and c3 is thephaseat x = y = 0. Then,
using (9), (30) becomes

A, (t --- i exp (-i k.R.) Bi'j,(kach) ezV(imc3) P(kaa+mc,, ka b+mc.) ,(32)

which is independent of time. This case has been investigated previously
[7, Appendix].
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Now if the surface is actually random, the quantities h and c 3,

above, could beconsidered as r;tndom variables, with the PDF for c
uniform over a 2

Tr interval. In this case, the mean (ensemble average)
of the mith complex amplitude A.,(t) in (32) is zero for m / 0; thus,

there are no coherent components in any of the sidebands. For m = 0,
an assumption on the PDF of h is necessary th evaluate the ensemble
average Jm (kach). For example, for a Rayleigh PDF of surface heights,

I exp ,2 h>0 (33)

where a is the rms wave height, the mean value of A. (t) [11, 6.631 4]
isB

is T~) -1 erp (-i k R.) - P(k~aa k.b) exp(-i/k, 2 C2 a,2 ) (34
0 0 aR a

However, (34) coupled with (21) is seen to be but a special case of (10)
when C is first-order Gaussian:

f (k ac) - exp(-/ k C2 2 ) . (35)

Thus, the approach given in Subsection 2. 2 is a very powerful one for
evaluating the coherent component, and includes numerous special

cases. Nevertheless, (29) and (30) are useful for lending insight into

the spectral behavior of the received pressure waveform for a narrow-
band, surface -height variation. They could be used as che starting point

for the theory to be developed in the next subsection, but a more com-
pact approach has been utilized there.

3.2 SPECTRA AND POWER OF INDIVIDUAL NARROW-BAND

COMPONENTS

The received pressure waveform p(t) was given in (3) and the

coherent component (the mean of the received pressure) in (10). We
now wish to evaluate the correlation function of p, and then the

spectrum, for a narrow-band, surface-height variation. The correlation
function RP of p is, by asimplegeneralizationof (13) through (15),

R (r) =p(t) p*(t-r)

- exp i2Iffr) 'fdudvJ'tu,v) exp[ik,(au+bv)lf (k ac,-k ac;uV, r)

7 Since the surface proct.ss and, therefore, the received acoustic process ire ntn ergodic in this

case, this average is net equal to the time average over individual member functions.
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•'p(t) p't-r) + B 2 ezp(i2nfar) ffdudvj(u,v) expz ik.(au+bv)-

(36)
[ft(kac,-k c;u,v,r)- f (kac)0 21

where we have used (10) and (17). We define the covariance function of
p as the correlation function of the ac component (i. e., scatter com-
ponent) of p:

Rs(r) = Ps(t) Ps* (t- r)

= [p W) -UA [p* (Ct- r) - p* (t - r)]

exp(i21rf,r) ffdudvJ(u,v) exp[ik(au+bv)1 (

[f (kaC?,-ka c;u, v, r) - I ft(k.c)12] .

Equation (37), a general relation for the correlation function of the
scatter component, reduces to the mean-square pressure of (18) for
" = 0.

Again we make the assumption that the effective extents on the
surface of the incident illumination pi are much larger than the dis-
tances at which the surface heights are statistically dependent on each
other, and get the approximation (See (18)through (20)) for the correlation
of the scatter component:

R = exp(i2nf.f) J (0,0) ffdudvexpik(au+bv)1 (8T~a a(38)
[fC(k.c,-kac;u.v,T)- IfC(kac) 121

At this point, we make an assumption about the statistics of the surface
heights, namely, that the second-order PDF of surface heights is joint
Gaussian (10, pp. 343-345]. Then [IZ, Eq. (8-23)],

f -p(u,v,r)I] , (39)

where a is the rms wave height and p is the normalized spatial-
temporal correlation function of surface heightsý, assumed homogeneous
and stationary:

2p(uv"-)= •(x,y,t•(x-u~y-v,t-r) .1

13
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If we substitute (39) into (38) and use (19), there follows for the
correlation function of the scatter component

R (r) = "- exp (i2nf r) 1(0,0) exp(-B 2) ffdudvexp[ik.(au+bv)] (41)

[exptI3 2p(u,v,2)i1-1

where we have defined the surface roughness parameter £2, p. 82, Eq. (10)]

f-=k8 ca (42)

The mean-square value of the scatter component for the Gaussian surface
is given by substituting r = 0 into (41); then only knowledge about
p(u, v, Or, the normalized correlation between two separated surface
heights at the same instant of time, is required.

Thus far, the surface correlation function p(uv,r) has been
general. The spectrum G. of the scatter component is given by the
Fourier transform of (41),

G,(f) =fdrexp(-i217fr) R,(r) , (43)

and generally can be numerically evaluated by a Fast Fourier Transform,
(FFT). Thus, the received scatter-pressure spectrum could be
evaluated from (41) and (43) for any degree of surface roughness, with
no assumptions about narrow-band surface variation and narrow-band
components of the received pressure. However, a double integral and
an FFT is involved.

The approach taken in this report is to specialize to the case of a
narrow-band, surface-height spectrum. Then, p takes the form (See
Appendix D )

p(u, v, r) = Re Q (u, v, r) exp(i2wfsr)I

=- I (u, v, r) cos [2n1fsr+ argg(u, v, Tr)I (44)

where p(u,v,r) is the complex envelope of p(u,v,r), and varies
slowly with 7 as compared to exp(i2nfsr).

Upon substitution of (44) into (41), and us ing the expansion [11, 8.511 4

and 8. 406 3]

exp(xcos.)ý- Ira (N) exp(imt6) , (45)

14



we get

200

RS(r) B.Z. eiP(i2itf r) j(0,0 exp(-/ 2 ) • ffdudv (46)

exp [ik . (au + bv)) 11 (13' 1 a(u, v, r) 1) - 80o] exp0(i2fmf.r+imarg p(u,v,r)I)

where 8S. is the Kronecker delta.

The spectrum of the scatter component is obtained by Fourier

transforming (46):

G J(0,0) 1 T.(f-f.-mf) 47
(a )

where

T, (f) fdrexp(-i2yrfr) ep (-j 2) ff dudvexp[ika(au+bv).

[Im(p 2 IP(U OV ,T) I) _8. - exp (i m arg I g v, 0 1) (4 8)

Thus, the scatter spectrum is composed of spectral lobes, or sidebands,
centered at frequencies equal to the acoustic frequency f. plus
multiples of the surface center frequency fS as anticipated by (29)
and (30) and shown in Fig. 2. The mth order sideband is defined as
that spectral lobe centered at frequency f. + mf.. The zeroth order
sideband is centered at f., but is spread in frequency; it is distinct
from the coherent component of the received pressure, which has a

delta function at frequency f..

For a given surface spatial-temporal correlation function p,

observation point (a, b, c), and surface roughness P, (48) can be

numerically evalaated (by a double integral and FFT) for the spectrum
of the mth sideband component of the received scatter pressure. The
total power in the mth sideband is obtained by integrating the mth term
in (47) over all frequencies, and is denoted by

IP-.(t) 12 = J(0,0) ep(-3 2) ffdudvezp[ik8 (au+bv)-
a 0 (49)

[I= (021 e(u, V, 0) 1) - g.] exp(imargt.(u, v,0)I)



The scattering strength of the mth sideband is defined in a manner
similar to (C-1Z) in Appendix C as

IsP. [ '(t) 12 R2 82 1
o= e (_= j B ep(-P)ffdudvexp[ik,(au+bv)]

CQJ(oo) 7 7 (50)
(,82 1 P( I, ) -)_ xp m ri

The scattering strength S. depends on the spatial-tempcral correlation
function 9.(u,v, r) at zero time delay (r = 0).

3.3 SPECLL FORM OF SURFACE CORRELATION

Thus far, the spatial-temporal surface correlation function p(t,v, r)
has beengeneral, except for the narrow-band assumption. Wenow wish
to specialize to a particular form. Note first that if z is purely real,
but perhaps negative,

Ira( Izl) exp(imarglzD)=I,(z) (51)

Now consider that correlation function p has the form

\L/, ,V) -) (, u

That is, for a fixed delay r , contours of iso-correlation values are
elliptical! (There is no need to consider a rotated ellipse if the x, y
axes are aligned with local surface directional properties.) Distances
LX and L, are the (correlation) distances in the x and y directions,
respectively, at which the correlation is down to a specified fraction
(e. g., I/e) of its peak value.

Several important special cases of surface correlation can be
subsumed by (5Z). For example, if the correlation distances L. and
L. are equal, the surface is isotropic. However, if one of the corre-
lation distance is infinite, the surface correlation function is one-
dimensional; i. e., it depends ononly one of the variables u, v. Further
specialization of the "one -dimensional" surface-correlation function
would be a periodic "one-dimensional" surface -correlation function,
and as a particular case of the latter, a sinusoidal surface-correlation

sSee for example, Ref. 13, p. 81, where experimental results of this form have been obtained.
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function. Thus (52) is particularly usefuL for detailed investigation
because it retains a great deal of generality and is a reasonable approx-

imation to many practical situations.

Using (D-2) and (52), we note that

p(u, v, -r) = p(u,v, r) (53)

That is, surface correlation p is even in r for any u,v, under

assumption (52). Employing (D-15) through (D-17), we have for this case

of (52),
_uv, =PI L '2+ Pv , -2 + (54)

If we combine (50), (51), and(54), the mth order scattering strength is

= B. 1 exp(_,S2) ffdudvexp[ik.(au+bv) •

Q a
+ q 2)

Since I(x) = I(x), the scattering strengths of the pair of symmetrically
located sidebands at f. - mfs and f, + mf, are equal, under the
assumption (52); this is not true for general p. When we let

u=L rcosO ,(56)

v-=L, isin0

in (55) and perform the integration on 6, the scattering strength becomes

SB 2ý LILYI 2rv eV ( 2)7dr r J. (at)[J(p2p,(r))~4 (57)C 2 L LM
CQ a2 o

where

am-k.4a2L2+b2 L (58)

Recollect from (42) that

fl=kca -"(59a)

The fundamentalparamet.ers a and P are dimensionless and are basic
measures of surface behavior in the horizontal and vertical directions,
respectively. Tne former is related to the correlation distance of the
surface, whereas the latter depends on the surface roughness.
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The quantity a in (58) can take values in the range from zero to

very large values compared with unity. For example, in the specular

direction, a = b = 0 and a = 0. However, for other directions, if the

ratio of correlation distance to acoustic wavelength is much larger

than unity, a takes on large values. Of course- a can not become

arbitrarily large by letting the correlation distances increase, because

they have been assumed less than the illuminated extents. (See text

following (18).) The quantity P in (59) can take values in the range
from zero to values of the order of 10 without violating the conditions

stated in the paragraph following (30). Thus, for a smooth surface,

P = 0, whereas, for a rough surface, P can take onvery large values.
But, in this latter case, the sideband components in Fig. 2 of the received

scatterpressure would spread out significantly infrequency and over-

lap each other. These sidebands can not be separated at the receiver

by a filter, and the scattering strength S. would lose its meaning.

It would be necessary to resort to the general case given in (41) and

(43) for the received scatter spectrum to find how much power lies in

a particular spectral band.

The scatter correlation function for the elliptical spatial correlation

case is obtained by substituting (52) into (41):

Rr(r) = 21L L i: - exp (i2nfar) J (0,0) exp(-• 2 )
(59b'

f dr r Jo(ar) [exp I 2 p,(r, r)I-

However, for our purposes in this report, in order to retain physical

significance and interpretation for -scattering strength S. , we consider

a and P upper-limited to values of the order of 10.

For the specular direction, (57) becomes (See Appendix A)

S. -C Q (k L)LY)UM(le), (60)

where

The function Ur (P) in (61) depends on surface roughness P and

the form of the spatial correlation function P2 . In Section 5, plots of

UM (P) versus P for several forms of spatial correlation P 2 are

given, including exponential and Gaussian spatial correlation and
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exponential and Gaussian modulation of a sinusoid or Bessel function for
the spatialcorrelation The factor preceding U, (.) in(60) is held con-
stant for these plots; thus, the geometry, acoustic frequency, and corre-
lation distances are considered fixed. Each plot, therefore, measures
the dependence of the mth scattering strength S. on surface roughness

Sas the rms wave h-tight a is varied.

For directions other than specular, a / 0, and a change of variable
in (57) yields

so L B2  V.(a,•) , (62)
CQ(a2 X+b2.~

where

v.(a3)-(2w)-'ezp(-1 2 ) 0ds j. ()[I (," p,( - .] (63)

The function V. (a,•) in (63) depends on a, P, and theform of the
spatial correlation'function P2 . If the factor preceding V6 in (62) is
held constant, the geometry and the ratio of correlation distances must
be considered fixed. Then, the function V, measures the dependence of
scattering strength on a as the correlation distances L. and L. are
varied (although their ratio is fixed) and on P as the rms wave height a
is varied. Plots of V. (a, P) versus a and P for several forms of

P2 are also presented in Section 5.

For the particular surface correlation function form assumed in
(5Z), the general expression for the correlation function of the received
scatter pressure waveform given in (41) takes a special form. It is,
using (56),

R(r) B2 (kaL.) (k Ly x)ep(i2rrf.r) (270) 1 expf(- 2) 7 dr r
R.2  

0 (64)

jo(ar)[e•zjpf3 2 p(r,'r)1-1]

Thus, only a single integral need be evaluated in order to obtain the
scatter correlation function. The scatter spectrum follows from (43).
Arbitrary surface roughness is allowed. The scattering strength for the
total scatter power is, using (C-12) and (54),
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R,(0) R2 B2

S , L.) (koa-L ,)(2yr)-! exp(-.3 2 ) f dr r
CQJ(0,0) C Q 

0 (65)
jo (ar)[exp lie 2 p 2 (r)' - 1]

Again, a zingle integral must be evaluated for the scattering strength,

and arbitrary sut'face roughness is allowed.

3.4 NARROW-BAND SIDEBAND SPECTRA FOR SMALL ROUGHNESS

The spxectrum of the received scatter pressure was represented
as a sum of narrow-band lobes in (47) and (48) for general surface
roughness P and narrow-band correlation p,. (SeeFig. 2.) For small
3, a useful approximation to (48) can be made: first note [11, 8.445]
that 2

.W -= for X <<1 (66)
(x/2)'

When we employ this approximation in, (48) and use (D-7), there follows

To (f) =L"/31 exp (_f 2) fdu dv exp[ik4(au+bv) fdw.j(u, v, w)* (u,v, w-f)
4

* (f) -L p 2 exp (-_32) ffdu dv exp [i k (au + bv)] g(u, v, f) (67)

2(f) 1#4 exp(-/3 2) ffdudvexptik.(au+bv)] fdwi(u,v,w)g(u,v,f-w)

The largest term is T1 (f), which is proportional to p 2 and to the
double Fourier transform of the low-pass spectrum g of the surface
correlation. T, (f) is not simply proportional to g(O, 0, f), the low-
pass spectrum at a point of the surface-height variation. T0 (f) is pro-
portional to P4 and is related to the autocorrelation of the low-pass
spectrum g. T 2 (f) is proportional to p4 and related to the convolution
of the low-pass spectrum g.

For the special case when the spatial-temporal surface correlation

function is separable in space and time variables,
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P(U'V' r) = P3(u'v) p 4 (r) , (68)

g(u,v.f) is also separable,

g(u, v. f) = P3 (u, v) - 4 (f) (69)

and the frequency-dependent terms of (67) are given by

aw-84 (w) g(w-f) , (70a)

g4 (f) , (70b)

fdw 94 (w) 94 (f-w) (70c)

respectively. Since, from (69),

g(0,O,f) =g 4=(f) • (71)

g 4 (f) is proportional to the surface-height spectrum at a point and,
therefore, is real. Equation (70) states that the zeroth-order scatter
sideband spectrum T0 (f) is directly proportional to tb- autocorrelation
of the wave-height spectrum and is even about f = 0 ',which corresponds
to f = f. in the received acoustic spectrum). Also, the first-order
sideband spectrum is directly proportional to the wave-height spectrum,
and the second-order sideband spectrum is proportional to the convo-
lution of the wave-height spectrum and need not be even about f = 0
(which corresponds to f = f + 2f, in the received acoustic spectrum).

The mth order sideband T, (f) is proportional to p2, for small
Sand Imn _ 1. This sideband involves higher order convolutions of

the low-pass spectrum, thereby causing significant spreading in fre-
quency. This is consistent with the observations made in the text
folluwing (30).

3.5 RMS BANDWIDTH OF SIDEBANDS FOR SMALL ROUGHNESS

It is of interest to know quantitatively the amount of frequency
spreading that each sideband undergoes. One simple measure of this
spreading, short of evaluating the actual sideband spectrum, is the
rms bandwidth of each sideband. We start by defining the rms band-
width B of the surface-height spectrum g for the special case of
(68) according to
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B2 = fdff 2 g(0,0,f) - fdff2 _g4(f = fdff2  M4(f7 Sfdf g (0, 0, f) fdf g 4 (f) (72)

where we have used Appendix D and the fact that

p31(0,0) = P4 = 1, (73)

since p(0,0,0) = 1.

For small roughness, the spectra of the zeroth and first- and second-
order sidebands are given in (70). From (70b), it follows immediately,
using (72), that the rms bandwidth B, of the first-order sideband is
equal to B,, the rms surface-spectrum bandwidth. The zeroth order
rms bandwidth B. is available from (70a) as

B2 =fdff2 f'dw g 4 (w) g 4 (w-f)B= =-2B 2  (74)
0 fdf fdw1g4 (w) -94 (W-f) S

utilizing the fact that

fdff g4(f) W , (75)

from (D- 5), (D-6), and (69). Similarly, it may be shown, in general,
that the rms bandwidth of the mth order sideband is given by

B , (76)

if P << 1. Thus, the zerothandsecond-ordersidebandsare ,/ý wider

than the surface spectrum, and the higher order bandwidths increase
as the square root of the order number. For the small roughness case,
the correlation distances or direction cosines do not enter into this
relation.

4. RELATION OF SURFACE CORRELATION FUNCTION TO
DIRECTIONAL WAVE SPECTRUM

The results in the previous section require specific forms for the
spatial-temporal surface correlation p for their numerical evaluation.
In this section, we shall use the relation between the surface correlation
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function p and the directional wave spectrum for a wind-generated
sea composed entirely of gravity waves, and specialize to several
cases of interest.

4.1 GENERAL RELATIONS

For a homogeneous surface, the spatial-temporal surface corre-
lation function p(u, v, ) can be expressed in terms of the directional
wave spectrum g2 (ý,v) [13, Part 8; 10, Chapter 8].'

2 p(u, v, r) = ffdp dv ý2 (IL, v, cos[ul+vv--g"' ( 2 +V 2),4 T1 (77)

where g is the acceleration of gravity and ai and v are the wave
numbers in rectangular coordinates. In particular, the temporal corre-
lation of the surface-height variation at a point is given by

r2 , 2(o, 0, r) = fdia dv .2 (j, v) cos[g½ ( 2 j ) , (78)

An alternate representation of the directional wave spectrum in terms
of the polar form A 2 

ýL,v) is often used:
g½ A2 (g½(2v•,tn

^2 ( 9, A) =- (ft 2 +V 2 )% tan-' (79)
A (p, 0 = - 2 (IL1 2 + V 2) Y (9

If we substitute (79) into (78) and make the substitutions . = (2ir f) 2 cos 0/g,
v = (2irf)2 sin9/g, the surface-height temporal correlation becomes

W r
a 2 p(0,0, r)=2rf dfcos(2rifr) f dOA 2 (2r.f, 0) (80)

0 -17

The (doable-sided) surface-height spectrum (at a point) is denoted by
$(f) and is the Fourier transform of (80):

i7

(fW = fdrexp(-i2m fr) a2 p(0,0, r) = a f dO A2(2irf. ,0)
-7r

=(2r,)4 g92 Ifl3f d%0 2(4r2ifcosO0 , 4r 2f2 sinO (81)

The last form follows from (79).

4.2 ELLIPTICAL SURFACE CORRELATION

The results above are for general directional wave spectra. Here
we will consider a special case of particular interest. We assume first
that the directional wave spectrum R2 possesses 1800 symmetry.'
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2 X_ 2 ,(82)

This is done for mathematical tractability, rather than for any under-
lying physical reason. Then. from (77), p(u,v, r) is even in r for
all u, v:

p(u,v,-r)=o(u,v,?) (83)

When we use (D-15) thrcough (D-17) and (77), there follows

p(u, v,O) =p(u,v,O) =ffdpidv A-2 • 2 (, v) cos %tA+vv) (84)

But this 'relation can be inverted by a double Fourier transform to
obtain the dircctional wave spactrum ýt2 (i±,V) in terms of a(u, v, 0):

0-2 ;2(14p)-=(2r)"2 ffdudvexp[-i(Lu+vv)]p(u,v,O) (85)

We have used the symmetry of Jt2 in obtaining (85).

For the elliptical correlation form assumed in (52), we had ini (54)

P(•, v, 0) (u)2 1+ (v2' (86)

If we substitute (86) into (85), the directional wave spectrum takes the
form

(• •) 2 L0L (2r 1 -I d r P 2 (r) j. (87)

22

Thus, the directional wave spectrum is aiso elliptical if the surface
correlation is elliptical at zero delay. (An isztropic surface is a special
case of (87).) EquatiL 1 (87) may be expressed compactly as

A 2 (174 =a 2 L LL(Th) 1 f drrp 2 (r) Jo(r) .7 (88)
2 V 2

For any particular form of spatial correlation p2 9 (88) can be evalu.-
alted numecically; then, (87) yields the directional wave spectrum.

Conversely, if the directional wave spectrum t2 is elliptical, so
also is g(u, v, 0). The exact relation is obtained by setting
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(14 ((L (89)

in (84). There follows

SP(u, V, 0) =(a2L L)" 2,7 dr/r/A2 67) Jo +LFV

- \Z Y ) (90)
-P2 ( H, + ' Y

or more compactly,

p2 (r) = (a2 L Ly)"1 2v 7 dr/V A2 (1() J , (r9) (91)

Equations (88) and (91) are a Hankel-transform pair of order zero
[14, p. 136]. Specification of either p2 or A2 determines the other.

The surface-height spectrum O(f) for the elliptical surface corre-
lation is obtained by substituting (89) into (81):

fr sin2 -42" -, (2
4D(j)=(2v) 4 g72 If13 - dA•(LicosO) 2 +(LY 4a

For the special case of an isotropic surface, L. = Ly -= L, (92) becomes

•(• (2v) 5 9- 2 IfI3 A 2 4v (93a)

and (91) takes the more familiar form

Uý P2 (r) f df D0OW]J, tI -fJL (93b)

Here, 20(f) is the equivalent single-sided surface-heght spectrum.

4.3 EXAMPLES

Four examples of the elliptical surface correlation function given in

(86) will be considered. The first is exponential decay of a cosinusoidal
spatial variation:
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P2 (r) - exp(-Rr) cos (Qr), r_> 0 (94)

For Q equal to zero, simple exponential decay of the spatial corre-

lation is realized. R is of the order of unity. When we substitute (94)

into (88), it follows that [11, 6. 623 2]

1 1+i Q/R
A2(q) =a 2 L.L (2n)' R-2 Re (95)2 V ý[41 + iQiR) 2 + 67/R)213/2

The surface-height spectrum for the elliptical surface correlation then

r,;quires the numerical evaluation of (92). For an isotropic surface,

1, = LY = L, substitution of (95) into (93a) yields for the surface-height
,,pectrum

VA0 = bra L 'Da (1)
I FgR (96)

where the dimensionless parameter x is defined as

x = 2nf1r4 (97)

and the dimensionless function $ is defined as
S I+iQ/R

4(X) =Ix 3 Re/(98)[1+ i Q/R) 2 + X413/2 (8

A plot of the frequency-dependent term $ is given in Fig. 3 for several

values of Q/R<. 1. As x -- 0+, the Re component of (98) approaches
I -4Q/R)2 

( 9
[I +(Q/R)2]2

Since the surface-height spectrum can not be negative, it is necessary

(but not sufficient) that Q/R < 1 'n order for (94) to be a valid fo-m of

spatial correlation. The spectrum of (96) decays as If - 3 for large

frequencies.

Since Q was upper-limited to a value of unity in the above example,

the surface-height spectrum can not be made arbitrarily narrow. It is,

therefore, of interest to demonstrate that arbitrarily narrow spectra are

possible through a slightly modified spatial correlation, namely, ex-

ponential decay of a Bessel function.
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p2 (r)=exp(-Rr)J.(Qr),r>0>.0 (100)

This function also oscillates with r, but decays slightly faster than
(94) because the envelope of J. (t) decays as t-% for large t. if we
substitute (100) into (88), there follows [15, pp. 314-316, Eqs. (11), (14),
and (19)]

A 2 (7)= u2 L.Ly (20)- 1 drrexp(-Rr) Jo(Qr) J,(i6r)
2 V 0or 2L L . 1 45) (101)

.2 R + -[R+ (2 2-) E(.) (101)

where F,(.) is a complete elliptic integral of the second kind with
modulus (16, Chapter 17; see especially p. 590]

Q q 7 Q(102)k= RR +R R+'(1
or parameter

m =4-.2- Q +q -+ -jj . (103)
R RLR /

The surface-height spectrum follows upon substitution of (101) into
(92) for the elliptical surface correlation case. Since A2 ('1) of (101)
is positive for all choices of Q and R [16, p. 609; m of (103) is
always less than unity], the surface-height spectrum q(f) of (92) is
nonnegative; therefore, we consider the spatial correlation form in
(100) for arbitrary values of Q and R.

Rather than evaluate (92) numerically, we restrict attention here
to the isotropic surface and use (93a) to obtain the surface-height
spectrum:

4)(f = 2o2 I L(x) , (104)
V;R

where

x a- 2fff L (105)

and

2 [ -) E(-) (106)
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The parameter m of the complete elliptic integral is given by

m =4 2.-x2 +(2+,)] (107)

The frequency-dependent function $(x) is plotted versus x in Fig. 4
for several values of Q/R. The spectrum decays as If 1-3 for large
frequencies. The narrow-band character of the surface-height spectrum
for large Q/R is evident.

The third example of spatial surface correlation is Gaussian decay
of a cosine 9 :

p2 (r)=exp(-R 2 r2)cos(Qr),r>O (108)

Substituting (108) into (88), we obtain

L (2Y Rfdtx(2)Os ( 2R-t) J(R"t (109)

The surface-height spectrum for an isotropic surface follows upon
substituting (109) into (93a):

Cif)=21r2 (X) (110)
;gLR

where

x=2f L (111)

and

O(X)=iX13 dttexp(-.r 2) COS(112)~t

This function is plotted in Fig. 5 for several values of Q/R. (The method
for evaluating (112) is given in Appendix E. For Q/R> 1.848, $(x)
goes negative at the origin, thereby invalidating (108) in that range.)

The fourth example of surface correlation to be considered is
Gaussian decay of a Bessel function:

P2 (r)=exp(-R 2 r2)J '(Qr),r>0 (113)

Q equal to zero corresponds to Gaussian spatial decay of the correlation.
When we substitute (113) into (88), there follows [11, 6.633 2]

9 This is a form treated by Lysanov (Ref. 17) ane suggested by Schulkin (Ref. 18, p. 42).
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21 Q2+q I /Qq\(14
Y(4R 2 / \RZ/(14

The surface-height spectrum follows upon substituting (114) into (92)
for the elliptical surface correlation case. Since A2(,) of (114) is
positive for all choices of Q and R, the surface-height spectrum
4b(f) of (92) is nonnegativeC therefore, we consider the spatial correlation
form in (113) for all Q and R.

The exponential and Bessel function in (114) can be expressed as

(_ZR ))R R

Since the fu •ction exp(-t) I. (t) is weakly dependent on t, it is seen that
A2 (1) possesses a peak approximately at q = Q of width proportional
to R. The integralof(92) for 4t(f) tends to smooth this peak. However,
the isotropic surface-height spectrum of (93) does not involve this
smoothing and is a peaked spectrum; a measure of the peakedness is
the "quality" ratio of center frequency to bandwidth, and is related to
the ratio Q/R for this example.

The surface-height spectrum for an isotropic surface is obtained
by substituting (114) into (93a), and is given by

4(f) = 2 2  b , (116)
ýgR

where

x =- 2 rf (117)

and

$(z)= I z13 exp 4 • (118)

The frequency-dependent term $ is plotted versus the dimensionless
parameter x in Fig. 6 for several values of Q/R. The spectrum
decays as exp(ocf 4 ) for large frequencies.

The narrow-band character of the surface-height spectrum is
evident from Figs. 4 and 6 when the ratio Q/R is large compared to
unity.
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5 SCATTERING STRENGTHS OF SIDEBAND COMPONENTS

i'or the case of a narrow-band surface-height spectrum, the scat-
tered acoustic spectrum at a receiving point may be obtained from (47)
and (48). The general form of the received acoustic spectrum was shown
in Fig. 2 to consist of a series of spectral lobes or sidebands, each
separated from the incident acoustic frequency fa by multiples of the
center frequency f of the surface variation, plus an impulse at theS

acoustic frequency f.. This impulse is the coherent component.

The total acoustic power in each spectral lobe, or equivalently the
scattering strength, may be obtained from (60) and (61) for t.he sp, :ular
direction, and from (62) and (63) for the nonspecular di-ection. In

this section, we will evaluate Um(P) and V (a, P), as given by (61)
and (63), respectively. As mentioned in Subsection 3.4, if the factor
preceding U... (P) is held constant, the geometry, acoustic frequency,
and correlation distances are considered fixed. The plot of U. (P),
therefore, measures the dependence of the mth scattering strength
on the surface rms wave height a through the roughness parameter
3. V, (a, P) measures the der.-ndence of the mth scattering strength

on the correlation distances L and L (although their ratio is fixed)
through a, andon therms wave height a through P. (Integrals (61)
and (63) we,-e numerically evaluated by Simpson's Rule; the error
analysis is contained in Appendix F.)

In Figs. 7through9, U. (P) isplottedversus P for m = 0,1,2,3,4
for an exponentially modulated Bessel function spatial correlation,

p2(r) = exp(-r) Jo(Qr) , (119)

for values of Q = 8, 4, 0. In Figs. 10 through 12, a similar set of curves
is plotted, the only difference being that the spatial correlation is a
Gaussianly modulated Bessel function.

p 2(r) = exp(-r 2) j0 (Qr) (120)

To better explain these figures, let us concentrate temporarily on
Fig. 12; here Q = 0, meaning the spatial correlation is Gaussian.
U1 (P) corresponds to the scattering strength in the first sideband
(eithe:- above or below the acoustic frequency f.). Since a = 0, we
are considering only the specular direction. P = 0 corresponds to a
flat surface; for this value of 3, there is no scattered power in the
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sidebands since all the reflected power appears in the coherent com-
ponent. As P increases, there is iess power in the coherent component,
and more scattered power appears in the sidebands. The power in the
first sideband reaches a maximum value when the surface roughness
parameter P is approximately unity, and decreases thereafter. For
these larger values of P, the surface is rougher, and more of the
scattered power will appear in higher-order sidebands in directions
other than specular. We have plotted the zeroth through fourth-order
sideband scattering strength factors U. (P) ii Figs. 7 through 12. All
the curves initially increase as A increases from zero, retach a
maximum, and then decrease. For large P, there is little diffe-ence
in power between the various sidebands.

For Q = 4, or 8, the gross features of the sideband powers are
similar to those for Q = 0, whether the modulation is exponential or
Gaussian. However, whereas for Q = 0, U1 (P) is larger than U.(0)
for a large range of P, the reverse is true for Q = 4 and 8. For larger
Q, the zeroth and second-order sidebands contain most of the scattered
power in the specular direction. As Q increases, the power in each
sideband, for. a given roughness P, decreases. The reason for this
is that the total scattered power in the specular direction decreases
with increasing Q, since the correlation distance decreases. (This
latter effect is due to the factor J. (Qr) in (119) aud (120), which decays
with r in addition to the exponential terms.)

For small P, the power in the first sideband is proportional to

12 , and the powers in the zeroth and second-order sidebands behave
as 14 (See (67)). This is not apparent in Fig. 10 for the Gaussian
modulated case for Q = 8, because the effect occurs at smaller
values than plotted.

The major difference between the exponentially modulated and
Gaussianly modulated curves occurs at larger values of P. Here the
sideband powers are much larger for the Gaussian case than for the

exponential case. This is true for all Q and all orders of sidebands
plotted.

In Figs. 13 through 27, three-dimensional plots of V3 (a, 13) versus
a and P are given for m = 0, 1,2, 3,4 and for an exponentially
modulated Bessel function spatial correlation (See (119)) for values of
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Fig. 13 - Vo for Exponentially Modulated Bessel Function Spatial Correlation, Q = 8

(vo = .268 . lO- at a = 15 1/3, j = 1.6)
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Fig. 14 - V for Exponentially Modulated Bessel Function Spatial Correlation, 0 = 8

(V 1 =.763" -0-lat a=8, )3=1.O)
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Fig. 15 V2 for Exponentially Modulattd Bessel Function Spatial Correlation, Q =8
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Fig. 1.6 - V3 for Exponentially Modulated Bessel Function Spatial Correlation, Q=8

(V3 =.678.lO0- 2 at a = 20, S= 2.4)
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Fig. 17- V for Exponentially Modulated Bessel Function Spatial Correlation, Q 8

(V4 = 392 • l10 2at a -20, 6 2.9)
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•'•Fig. 18 - V0 for Exponentially Modulated Bessel Function Spatial Correlation, 0 =4r . 10v1 --. t •o•= 72/3, 1.6)
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Fig. 19 - V for Exponentially Modulated Bessel Function Spatial Correlation, 0 = 4

(VI =.395 • 1o01 at a - 4 i3, 1.o)
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Fig. 20 - V2 for Exponentially Modulated Bessel Function Spatial Correlation, Q 4

(v 2 1.06.10-1 a t a-, -8 1.4)
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Fig. 21 - V3 for Exponentially Mcdulatcd 8essel Function Spatial Comrelaticnh, (1 4

(V, =.601. _o-•2 . • a=17, 2.9)
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Fig. 22 - V4 for Exponentially M.-dulattd Bessel Fouction bpatial Corrclati, 1 CQ 4

(v4 -. 425. l0-2 at a - 20, 13 -- 3.4)
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Fig. 23 - V for Exponential Spatial Correlation
0
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Fig. 24 - V for Expoomiol Spatial Correlation

(V .120o- 10-1 at a 12/3, f 1.1)
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Fig. 25 - V2 for Exponential Spatial Correlation

(V2 = .643- 10-2 at a = 6 2/3, 1 = 2.2)
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Fig. 26 - V3 for E:xponential Spatial Correlation

(v3 = .460. o-z 10- 2 t = 14 j/3, J3 = 3.2,)
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Fig. 27 - V4 fr~ Exponential Spatial Cotnelation4

(V4  .352 -1-2 at a . 2, 133.9)
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Q = 8,4,0. In Figs. 28 through 42, a similar set of curves is plotted;
the only difference iq that the spatial correlation is a Gaussianly
modulated Bessel function of the form of (120). These functions were

computed for a = 0(1/3)20 and • = 0(. 1)6. The maximum.values
attained by V, (a, P) at this grid structure are presented in Table I
and are noted on each plot. (These values are not necessarily the
maximum values of V (a, P), but simply the maximum values at the
sample points investigated.) Since the plots are isometric, values of
V. (a, P) at other values of a, can be obtained by measuring the
vertical distance above the a, 3 plane and scaling according to the
values given.

To explain the detailed behavior of these plots, it is helpful to
consider P as a measure of the surface vertical roughness, and a
as a measure of the surface horizontal roughness. As P increases,
the surface becomes rougher in the vertical direction; also as a
decreases, i.e., the correlation distances decrease, the surface
becomes rougher in the horizontal direction. For a given a, the
behavior of V* (a,•) with • is similar to that observed in Figs. 7
through 12.

For • = 0, VE (a,[) is zero for all a since the surface is flat
and there is no scattered power. As P increases, the scattered power
increases, reaching a maximum. As P increases still further, the
curve decreases, indicating that more of the scattered power appears
in higher order sidebands. Note from the plots that for a given sur-
face spatial correlation and a given Q, the location (a, P), at which
V3 (a, P) reaches a maximum value, increases as m increases; i.e..
the peak location recedes from the origin.

For a given P (fixed roughness) and a large a (large correlation
distances), the surface is very planar, resulting in most of the re-
flected power appearing in the specular direction. As a decreases
from large values, the surface becomes less planar, more power is
scattered in the nonspecular direction, and V. increases. However,
as a decreases still further, the surface becomes rougher in the
horizontal direction, and more of the scattered power appears in the
higher order sidebands, so that each particular V* (a, P) decreases
with a in this range. The ratio P/a is a measure of the average
slope of the surface; as this ratio increases, more of the scattered
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Table I

APPROXIMATE LOCATIONS OF MAXIMUM
VALUES OF V. (a*,3)

Fig. v.
No.

13 151'3 1.6 .268" 10"
14 8 1.0 .763" 10-1
15 151/3 1.6 .144 • 10-'
16 20 2.4 .678" 10-2

17 20 2.9 .392 - 10-2

18 7 2',3 1.6 .196 - 10-1
19 4 '3 1.0 .395 • 10-1
20 8 1.7 .106. 10-1
21 17 2.9 .601• 10-2

22 20 3.4 .425 - 10-2

23 4 1.7 .106 - 10-1
24 123 1.1 .120 - 10-
_! 6223 2.2 .643. 10-2

26 141 3 3.2 .460 - 10-2

27 20 3.9 .352 - 10-2

28 15 1.6 .325- 10-1
29 8 1/3 1.0 .705 - 10-1

30 151/3 1.7 .177. 10-1

31 20 2.7 .890- 10-2

32 20 3.1 .570- 10-2
33 72/3 1.6 .249- 10-'
34 42/3 1.1 .398- 10-'

35 8 1.8 .141 - 10'-

36 13 '3 3.1 .903 - 10"2

37 18 4.1 .690 - 10-2

38 3 1.7 .210- 10"'
39 2 1.1 .237" 10-'
40 4 2.2 .125. 10-'
41 61/3 3.3 .886. 10-2

42 8 4.1 .683- 10-2
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Fig. 28 - Vo for Gaussianly Modulated Jesel Function Spatial Correlation, Q 8

(V0 =.325- 10- at aa 15,3 1.6)
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Fig; 30 - V, fow Gausianly Modulated Besel F unction Spatial Correlaloa, Q 8

(v 2 .177 lo a a =15•1/3, - 1.7)
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Fig. 31 - V5 for Gaussianly Modulated Bessel Function Spatial Correlation, 0 = 8

(v .8901.-2 ta 2=O, -2.7)
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Fig. 32 - V4 for Gaussianly Modulatw-d Belel iFunction Spatial Correlation, 0 = 8

(V4 .. 570. 10o2 at a= 2, P =3.1)
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Fig. 34 - VI for Gaussianly Modulated Bessel Function Spatial Correlation, Q 4

(VI .398 -10-1at a 4 2/3,I3ll
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Fig. 35 - V2 fo Gat~mianly Modulated Reuel Functloa Spatial Correlartion, Q :4

(2( =.141 o-' ,,- ata 8, P -•8)
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IFig. 36 -V 3 for Gaussianly i.odulated IBe~l Function Spatial Correlation, 0 =4.

(V 3= .97. 1- 2 at a= 111/3, 3 3. 1)
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Fig. 3? -V4 for Gaunianly M•odulated Bessel Fistctiout Spatial Correlation, Q 4

(v4 = .69o. -o 1- &t a - 18-, =4-1)
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Fig. 38 - V0 for Gaussian Spatial Correlation

(V0  .210O.10- 1 at a=3, 1i.7)
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Fig. 39 - V1 for Gaussian Spatial Correlation

(VI=.237.10-1 at a=2, =1.1)
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Fig. 40 - V2 f Gaimian Spatial Correlation

Nv-•• 10-1 at a,- 4, jS -2. )
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Fig. 41 - V for Gaussian Spatial Correlation3
(v3 =.886. 1"2 t c- 6 3, --3.3)
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Fig. 42 - V4 for Gaussian Spatial Correlation

(V 4 = .683. -1 2 z at a - 8, z = 4.1)
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power appears in the higher order sidebands. This behavior can occur
through eiLher increased A (roughness)or decreased a (correlation
distances).

As a approaches zero, for the nonspecular direction, the corre-
lation distances approach zero. For this case, the surface becomes
very rough and, in the limit of zero-correlation distances, has the
properties of white noise. Although mathematically, for a = 0, the
amount of scattered energy in the sidebands is zero, the initial as-
sumptions (See Section 1) are violated for small correlation distances;
therefore, this portion of the plots does not have physical significance.

Curves of V (a, P) for p2 (r) = exp(-r) cos(Qr), Q = 1, were also
obtained, but have not been included because they are very similar to
the corresponding curves for p2 (r) = exp(-r) J (Qr); in particular, the
omitted curves are more peaked than exp(-r), but not as peaked as
exp(-r) Jo (4r). Similarly, curves of V. (a, P) for p2 (r) = exp(-r 2 ).
cos(Qr), Q = 1. 8482777,'0 were also obtained and exhibited behavior
intermediate to that of exp(-r 2 ) and exp(-r ) J. (4r).

Let us now compare the exponentially modulated Bessel function
plots with those of the Gaussian modulated Bessel function plots. For
large A, the Gaussian case has more power in a given sideband than
that of the corresponding exponential case. This behavior is similar
to that of the U curves in Figs. 7 through 12. For 0 = 0, the corre-
sponding exponential and Gaussian plots are somewhat dissimilar.
However, for Q = 4, the corresponding curves of the exponential case
are more nearly similar to those of the Gaussian case, whereas for
Q = 8, the two sets of curves are almost identical. Thus, for small Q,
the envelope of the spatial correlation of the heights is the controlling
factor, butas Q increases, the number of oscillations per given distance
of J* (Qr) increases, and J. (Or) becomes the controlling factor in
spatial correlation.

6. DISCUSSION

In summary, an analysis was made of a time-varying random
surface statistically stationary in both space and time. The reflected

10These choices of 0 are the largest possible consistent with a nonnegative surface-height spectrum;
see Subsection 4.3.
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i • acoustic spectrum was obtained in terms of the first- and second-order

characteristic functions of the surface-height variation. For the special
case of a Gaussian distribution of surface heights, a narrow-band
surface spectrum, and a surface spatial-temporal correlation function
that is stationary in the wide sense, the mathematical equation for the
received acoustic spectrum showed that the scatter spectrum is com-
posed of spectral lobes, or sidebands, centered at frequencies equal
to the acoustic frequency plus multiples of the surface-center frequency
(See (47) and (48)). For the special case of a surface spatial correla-
tion that has elliptical contours, the evaluation of the complete spectrum
can be ekpressed as a Fourier transform of a single integral. The com-
plete spectrum was not numerically evaluated in this report, but should
be obtained in future work. In addition, the restriction to a symmetric
directional wave spectrum, (82), should be eliminated. For example,
received spectra for hemispherical directional wave spectra should be
computed; this will yield unequal scattered sideband powers.

The power in each sideband was evaluated for a variety of conditions
and spatial correlations. It was found that the zeroth and second-order
sideband powers had a very similar behavior with surface roughness,
whereas the other sidebands had a somewhat different dependence. It
has been assumed that there is not an appreciable overlap of the side-
bands; for large surface roughness, there would be an appreciable
overlap of sidelobes, and the complete spectrum would have to be
obtained for this case.

It is worthwhile to discuss the difference between the surface
treated in this report and the fixed-amplitude sinusoidal surface con-
sidered by Roderick and Cron [7]. We have considered a narrow-band
spectrum for the height variation at apointon the surface, and assumed
the Joint probability density of the surface heights to be Gaussian. As
the bandwidth of the surface variation decreases and approaches zero,
the properties of this surface process do not approach the fixed-am-
plitude sinusoidal surface case. For example., the distribution of
heights remains Gaussian and is, therefore, different from the prob-
ability density associated with a sinusoid. The scattered powers in
the sidebands, as given by the narrow-band Gaussian theory, are
different from those of the single-frequency sinusoidal theory.
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In mathematical terms, the first-order-characteristic function of a
fixed-amplitude sinusoid is a Bessel function. If we average this Bessel
function with the Rayleigh distribution of sine wave amplitudes, we
obtain the Gaussian first-order-characteristic function. Thus, our re-
suits can be viewed as a particular average over the sinusoidal surface
case.

However, a narrow-band time function with center frequency f,
and bandwidth W resembles a sine waveof frequency f, over a short
period of time, but will differ from a sine wave over a longe- period
of time. The difference will show up on the order of W-1 sec. Thus,
if we obtain a short sample of the reflected signal from a narrow-band
surface, and determine the received acoustic spectrum from it, the
single-frequency theory (with the current surface-height amplitude)
should accurately predict that spectrum. However, for a long-time
average over the statistical properties of the surface, the narrow-band
Gauss ian theory, not the fixed -amplitude single-frequency theory, must
be used to predict the expected behavior of the spectrum.

This report has concentrated on the spectral quantities of the re-
flected signal. However, the probability distributions of the envelope
of the individual sidebands can also be obtained in at least one important
case. If the area of insonification is much larger than the correlation
area of the surface (product of correlation distances), we can appeal
to the Central Limit Theorem and state that the envelope and phase dis-
tributions of the mth component of the received scatter pressure field
are Rayleigh and uniform, respectively, for m / 0. For m = 0, the
scatter component combined with the coherent component results in a
Beckmann distribution (2, Chapter 7]. (Of course, as the coherent
component tends to zero, the Beckmann distribution tendb to the Rayleigh
distribution.) It should be noted that the assumption of Gaussian surface
statistics, i.e., 4(x, y, t) Gaussian, does not necessarily imply that
the received pressure is Gaussian, because the received pressure is
obtained via a nonlinear transformation on 4 (See (3)); rather, it is
the assumption of a large number of independently reflecting surface
portions that yields the Gaussian behavior.
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Appendix A

GEOMETRY FACTOR

The factor B in (3) is given different values by different authors.
For example, the values for B given by Parkins Al and Beckmann and

SpizzichinoA 2 using the notation in this report, are

I+ui 5"A Ii + a + bb + CcB . A.A. (A-Q Q
c cQ +Ca

CQ A

whereas EckartA3 gives the following value for B:

c CQ + cB= =Q (A-2)
2 2

Beckmann and SpizzichinoA4 attribute the discrepancy to the replace-

ment of the normal to the surface by a vector in the z-direction, an
approximation that is valid only for surfaces with very gentle slopes.

For the specular direction,

aA =-aQbA=-bQCA=CQ 9 (A-3)

both forms for B above become c.. Thus, there is no difference in
the specular direction. However, there can be significant differences

for other cases. For example, the second form for B depends only on
the direction cosines with respect to the z-axis, but the first form

depends on all direction cosines. Thus, at normal incidence.

aQ -- Q = 0, CQ = , (A-4)

B. E. Parkins, "Scattering from the Tine-Varying Surface of the Ocean," Journal of the
Acousical Society of America, vol. 42, no. 6, December 1967, Eq. (10), p. 1263.

A2P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough
Surfaces, The Macmillan Co., New York, 1963, Eqs. (11) and (12), p. 27, and Eqs. (29) and (32),
pp. 22-23.

AC. Eckart, "The Scattering of Sound from the Sea Surface," Journal of the Acoustical
Society of Amerca vol. 25, no. 3, May 1953, Eq. (6), p. 567.

A4Beckmann and Splzzichino, Appendix A, op. cit.

79



IA

and the two forms for B become

l'and %(l+€A c (A- 5)

respectively. For an observation point near grazing, these terms differ
by a factor of 2 in pressure.

Rather than attempt to resolve the differences in the scale factor,
we have expressed all our quantities in terms of the general symbol B
and leave it to the reader to make his choice as to the correct factor.
For a fixed geometry, so far as the relative spectral content of the
received acoustic waveform is concerned, the exact geometric factor
is not important under the assumptions of the present theory.
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Appendix B

CORRELATION PR)PERTIES OF SINGLE-SIDED PROCESS

Suppose x(t) is a wide-sense stationary single-sided8 l (complex)
process with no dc component. Let

(B- 1)

where

+ • (t) I Y [x (t) +," (t0]S~(B-2)

Denoting the Hilbert transform by • I, we have
U l * , t W I % i, X[ 1 Z Wx I + 9~ i (1]*W 1 3

(B-3)

where the single-sided character of x(t) and its lack of dc has been
utilized. The Hilbert transform is represented by a linear networkwith
transfer function -i sgn(f). Therefore, the transformation between

. x,(t) and x, (t) can be represented as in Fig. B-I.

I M

Fig. B-I - Hilbert Transform

Thus, we have derived the fact that the imaginary part of a wide-sense
stationary single-sided process is the Hilbert transform of the real
part.3 2 When the properties of linear networks are used, it follows
from Fig. B-I thatI $Single-sided means that the power density spectrum is confined to positive frequencies.

B2 This Is the conves•e of the usual situation where a waveform plus i times its Hilbert transform
Is shown to be single-sided.
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x (t) x(t-r) S (W) x(t-r)

x it ,,(t- ) =-xi(t) It r)(B-4)

Combining these properties, we find that

Wt) x(t-r) =0 for all r (B-5)

Of course, x(t) x (t-r) / 0.
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Appendix C

SCATTERING COEFFICIENT AND SCATTERING STRENGTH

The received(complex)pressure p(t) at the observation point was
given in (3). The scatter component p,(t) was defined in (11), and the
mean-square value of p,(t) was evaluated in (18) and (Z0). In this
appendix, we will relate the scattering coefficient and scattering strength
to these quantities.

The average scatter intensity (power/unit area) at the receiver for
a real sinusoidal signal transmittal is

Ip '(t)12/2
,(C-l)

pv

where p is the densityof the fluidand v is the propagation velocity.cI
If the receiver at A subtends a solid angle 0, as seen from origin 0
in Fig. 1, the average received scatter power is

Io2 a , (C-Z)

and the average received scatter power per steradian is
0 . IIpv t) R . (C-3)

Since the incident pressure on the surface at xy is Pi (x, y)
(See (3)), the incident intensity at x, y is

27 -I^p (I. y) 12 (C-4)

Therefore, the total incident power on the surface is

* c~ff dldy.......IP(K 12-= CQ J(o,o) (C-5)

using (16).

The scattering coefficient or scattering cross section a. is defined

by Eckartc 2 as

C' The factor of 1/2 follows in a manner similar to that in (5) and (6).

C2C. Eckart, "The Scattering of Sound from the Sea Surface, " Journal of the Acoustical
Society of Am-rice, vojl. 25, no. 3, May 1953, Eq. (18), p. 568, and Eq. (10), p. 567.
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1p.(W1I R.'
s j (0, 0)( - )

which can be manipulated into the forms

jp.t)I -R, I Ro2

Sffdxdy IfU(x,y) i2  ffdxdy _- I (x, y) I2

average received scatter power per steradian (C-7)

incident power on surface / CQ

where we have used (16), (C-3), and (C-5).

For purposes of this report, the "scattering strength" S is defined
asC3

S.ica (C-8)
"mic

where I is the average scatter intensity at the receiver due to unit
scatteringarea, referred tounit distance, and I is the average inci-
dent intensity on the surface. If we let Aeft be the effective area of
insonification in the x, y plane (e. g.,

A.eff .ffo~• "z dy1jY c-9)scattering area (C40

then

I-ct- LR2 p.(t)l R°' (C-10)

Aeff 2y Aeff

using (C-l). Also,
incident power on the surface

Inc A eff

CQ J (0,0) (C-A11)
• -•V Aeft

using (C-5). Taking the ratio of (C-10) and (C-ll), we note that the

scattering strength becomes

s ... !,W (C-12)
cQ J (o, 0) cQ

C3 R. 3. Urick, Principles of Underwater Sound for Engineers, McGraw-Hill Book Co., New York,
1967, p. 118, Section 8.2. Actually, Urick has a decibel ratio rather than a linear power ratio.,

84



using (C-6). Thus, the scattering strength equals the scattering coef-
ficient divided by the direction cosine of the incident pressure with re-
spect to the normal to the surface. This latter quantity, a, /c,,, which
is exactly what has been recommended by some authorsc4 as prefer-
able to a. alone, has been adopted in this report.

Notice that the exact definition of Aff did not enter into S because
it cancelled in the ratio (C-8); therefore, (C-9) is merely one possible
definition of this quantity. An alternate definition of S, which avoids
this quantity altogether, is available upon substitution of (C -7) into (C- 12):

S average received scatter power per steradian (C-13)
incident power on surface

C4C. W. Horton, Sr., and T. G. Muir, "Theoretical Studies of the Scattering Acoustic Waves

from a Rough Surface," Journal of the Acoustical Society of America, vol. 41, no. 3, March 1967,
Section II.C., p. 630.
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Appendix D

COMPLEX ENVELOPi; REPRESENTATION OF
NARROW-BAND, SURFACE-HEIGHT-CORRELATION FUNCTION

From (40), the surface-height correlation is
a 2P(UV, r) -- •'(,.,t)4(X--uy-v, t-T) .(D-1)

These are all real quantities. When the homogeneity and stationarity
of the surface is utilized, there follows

p(-U,-v, -r)= p(u, v, r) (D-2)

We define a normalized cross-spectrum g as the Fourier transform
of p; g(u,v,t) =fdrexp(-i2*rfr)p(u,v,r) (D-3)

It is a function of position differences u, v, as well as frequency f,
and is neither real nor even in f; however, it is narrow-band. Let us
now define the single-sided spectrum as

g+(u,v,f) = {2g(u,v,t), f>O (D-4)

and the center frequency of surface variations at a point as
fdffg+(O,0,f) • dffg(0,O,f)

f,= fdffg+o,(0,f) 0 f (D-5)
f df g (0,0,0 0

The expression g(O, 0, f) is proportional to the surface-height spectrum
at a point; it is real and even because p(0, r) is real and even. We
now shift the single-sided spectrum g+ down by f. toget a low-pass
spectrum g centered about zero frequency:

(u,v,f)=g+(u,'v,f+f) (D-6)

Then, the Fourier transform of g is defined as the complex envelope a:

p(uv, r)= fdfexp(i2wfr).(u,v,r)
=p+ (u, v, r)exP (-i2v(,•r),

where we have used (D-6) and defined p+ as the Fourier transform of
g+. Now, using t' Fourier transform of the unit stepDI

fdfexp(i2vft) - 8(t) +- , (D-8)
o 2vt

VIA. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill Book Co., New York,
1962, Eq. (3-13).
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p+ can be evaluated f'om (D-4) as

p+(u,v, )=p(u,V,,r)+ipH(u,v,) ,I (D-9)

where PH is the Hilbert transform of p:
I (,u, V, w)pn(u, V, r) =.-(D 10

PH ru p-W) (D--10)

Combining (D-9) and (D-7), we obtain

p(u,v, r) =ReIp+(u,v,r)I
(D-11)

=Re Ip(u, v, r) exp (i2Off f
which is the property desired in (44).

An additional property of complex envelope Q that will be necessary

is now derived from (D-10):
PH (-U, -V, - r) =-PH (uv, •) (D-12Z)

Substituting into (D-9), we note that
P+(-u,-V,-I)=P+(uv, r) (D- 13)

and then from (D-7), we get
P.(-U ,-v , -r) = .."(U , v ,) (D - 14)

For the special case where p(u, v, r) is even in r for all u, v, i. e.,

p(u,v,-I)=p(U,v, ) , (D-15)

F (u, v, 0) is purely real and is given by

P 5(U,v,00)-0. (D-16)

This may be seen as follows: From (D-10), using the evenness of p,
PH (U~VW0) = 0. (D- 17)

Then, using (D-9) and (D-7), (D-16) follows.
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Appendix E

NUMERICAL EVALUATION OF EQ. (112)

In (112), the surface-height spectrum was given in terms of an
integral:

C(x) - IX 1 f dt tezp(-t2)cos(qt)J0 (x2t) (E-.1)
0

where q a Q/R. To evaluate this integral, we expand cos(qt) in apower
series in t and obtain

I .x i3 q f d2 t2a+ ezp(-(t) Jo(z 2 t) (E-2)

-=0 (270 0
The integral in (E-2), from Gradshteyn and RyzhikEl is

% a! exp(-4/4) L. /4) , (E-3)

where L. is a Laguerre polynomial. Ther -ore,

= x exp(_x4/4) ! (-q 2)' .n! LW(1 /4) (E-4)(~ 20)! a

This series, which car. be easily evaluated byusing rerirrence relations
on the Laguerre polynomials, is plotted in Fig. 5.

For x near zero, 0(x) becomes negative if q is made too large.

From (E-1), it maybe seen that the largest value of q allowed is when
fdttezp(-t2 )cos(rj)_O •E-5)
0

That is, from Gradshteyn and Ryzhik,' 2

The solution for the smallest value of q satisfying (E-6) is

q -- 1.482777 (E-7)R

Therefore, (112) has been plotted only for Q/R less than this value.

"1. S. Gradshteyn and 1. W. Rya"ik, Table of Integrals, Seies=, and Producs, Academic Press,

New York, 1965, Eq. 6.631 10.

E2 Ibid., Eq. 3.952 8.
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Appendix F

ERROR ANALYSIS OF EQS. (61) AND (63)

The infinite integral of (61) must be approximated by a finite integral,
up to Value L, say. In order to determine how large L must be for
negligible error, we note that for small x

(z/2) 2 M

U>)x 8. (F-i1)
(x/2)" _>

Therefore, for large values of r,

f2P2 (r)) - Io. -. (F-2)
•[%•p22 (jr)] IM

The slowest decaying order is m = 1; therefore, the largest error in
terminating the integral (61) at L is approximately

E = (2v) 'exp(-fP 2) f drr!4f92 P2 (r) (F-3)
L

When spatial correlation p2 is an exponential modulation of either a
cosine or a Bessel function,

P2 (r) exp(-r) cos(Qr) or ezp(-r) Jo(Qr) , (F-4)

(F-3) is upper-bounded by 00
E ((2n)" es (-3•2) %ft' f dr r ezp(-r)

L (F-5)
(4fr)" 1 q2 exp (_162) (L + 1) exp (-L)

The largest value of p2 exp(_p2 ) occurs at P = 1, yielding

E _..(4ve). (L+1) exp(-L) (F-6)

For L = 25, E <5.10-1. The limit 25 was used in evaluating (61) for
the exponentially modulated spatial correlation; all the values of U. in
Figs. 7, 8, and 9 are much larger than 10-11.

For a Gaussianly modulated zpatial correlation,

p2 (r) = ezp(-r2) cos(Qr) or ,(_-r2) j (Qr) ; (F-7)
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the bound corresponding to (F-6) is

E <(B'e)lexp(-_L) (F-8)

For L = 5, E.S2 x 10". The limit of 5 was used in evaluating (61)
for the Gaussianly modulated spatial correlation; all the values of U.n
in Figs. 10, 11, and 12 are much larger than 2 x 10"-'

For integral (63), we can upper-bound the integrand by replacing
the Bessel function by unity. The slowest decaying order is again m = I.
An analysis similar to that in(F-1) through (F-3) yields, for exponential
modulation, the upper bound on the error

E <(4ffe)- 1 a(L+l) ezp(-L) , (F-9)

whereas, for Gaussianmodulation, the upper bound on the error Is given by

E <(8e)°' a2 ezp(-L 2 ) (F-10)

For L = 25, (F-9)yields 10-11a2; for L = 5, (F-10) yields 2 x 10"3Q2 .

The interval (0, L), used in evaluating (61) and (63), was repeatedly
cut in half and evaluated by Simpson's rule until insignificant change
occurred in the sum.
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